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Note 

A Modification of the Delves-Lyness Method 
for Locating the Zeros of Analytic Functions 

A new formula is proposed for the calculation of the integrals involved in the application of 
the Delves-Lyness method for locating the zeros of analytic functions inside an arbitrary sim- 
ple smooth contour. This formula does not contain the derivative of the analytic function 
whose zeros are sought and, moreover, is free from multivaluedness problems for the 
integrand. 0 1985 Academic Press, Inc 

1. INTRODUCTION 

We reconsider the Delves-Lyness method for locating the zeros of an analytic 
functionf(z) inside an arbitrary simple smooth contour C [3], assuming that f(z) 
does not have zeros on C. (This method is also reported in [S] and, in the par- 
ticular case of one zero, in [IS].) A revised form of this method was recently 
proposed by Li [6]. Both in the original [3] and in the revised [6] form of the 
method the main task is to evaluate the integrals 

1 Sk=- s 2ni c 
,kfM (jz 

f(z) ’ 
k=O(l)n, 

where sO = n is the number of zeros of f(z) inside C [3,4]. Generally, sk cannot be 
evaluated in closed form and the trapezoidal rule [Z, 73 is used for their 
approximation [3]. 

The main difficulty in using (1) is that not only the analytic function f(z) but its 
derivativef’(z), too, should be evaluated. In order to avoid evaluatingf’(z), Delves 
and Lyness [3] proposed to take into account that 

(2) 

and perform an ‘integration by parts in (1). The resulting algorithm is described in 
detail in [3], but it is somewhat complicated due partly to multivaluedness 
problems resulting from the nonanalyticity of logy(z). Recently, Carpentier and 
DOS Santos [l] proposed a second algorithm for evaluating sk without using the 
derivative of f(z) (or approximating it in some way). This algorithm is also 
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somewhat complicated and, moreover, it was suggested for circular regions only. 
(We can add that some references where the Delves-Lyness method was applied to 
the solution of real physical and engineering problems are reported in [I].) 

Here we propose a new formula for the integrals sk (k = 1,2,..., n), based also on 
an integration by parts (as has been the case in [3]), but free from multivaluedness 
problems and restrictions on the contour C (as has been the case in Cl]). We will 
not be concerned with the computation of the index n off(z) with respect to the 
contour C [4] (equal to the number of zeros off(z) inside C [4]), since this is an 
integer and it does not require an accurate computation. Generally, n is computed 
by using the formula [4] 

n = Indf(z) = & [argf(z)lc. 

Further methods for computing n are well known [ 1,4]. 

2. THE PROPOSED FORMULA 

We will prove that 

THEOREM 1. The integrals sk, defined by (I), are also given by 

k 

sk= -sG s cz 
kp1 log[(z - a)-“f(z)] dz + nak, (4) 

where a is an arbitrary point inside C. 

Proof: At first, we notice that since the index of (z-a)-” is equal to -n and 
the index off(z) is equal to n (with respect to the contour C), then the index of 
(z-a)-“f(z) is equal to 0 [4]. Therefore, log[(z-a)-“f(z)] is a singlevalued 
function along the contour C. Now, we take into account that 

ilog[(z-a))“f(z)] =‘$-L 
z-a 

and we perform an integration by parts in (4). Thus we have to prove that 

1 &+nak 

(5) 

(6) 

But since 

1 
uk=z cyy 1 Zk dz ’ (7) 
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because of the Cauchy integral formula in complex analysis, (6) reduces to (1). This 
completes the proof of the theorem. 

Remark 1. For k = 0 (4) reduces to s0 = n as was expected. 

Remark 2. In order to evaluate log g(z), with g(z) = (z - a)-“f(z), in the com- 
puter in order to use it in (4), we note that logg(z) = loglg(z)l + i9, where 
3 = tan-‘[Im g(z)/Re g(z)] +jn, where j is usually a small integer which may vary 
along C. Although the selection of j at the first point of C, where logg(z) is 
evaluated, is essentially arbitrary, since 

s zk-’ dz=O, k = 1, 2,..., (8) c 
yet, as logg(z) is computed further along C, attention should be paid so that 9 
varies continuously along the whole contour C. Clearly, in this case 9 is a 
singlevalued function of the points of the contour C (as already explained); that is, 
its increment in traversing the whole contour C is equal to zero. This continuous 
variation of 9 can be easily achieved in the computer (the fact that f(z) was 
assumed without zeros along C taken always into consideration). 
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